
 
 

 

  
Abstract— Due to continuous increase of power demand and on 

the other hand shortage of fossil fuels have diverted the focus of 
scientists towards alternate energy resources. Out of these, wind 
energy is emerging as a potential renewable energy resource and at 
present acquired the substantial share. Conventional wind turbines 
are used to extract the energy associated with moving wind. However 
the rotor size of such turbines increases with their rating. Increased 
rotor size results in to many problems such as its weight, complicated 
design, increased noise pollution & cost etc. Large rotor size and 
turbine cost have diverted the attention of scientists from single-rotor 
to multi-rotor wind turbines. Aim of this paper is to find out the most 
suitable power curve model for the analysis of multi-rotor wind 
turbines. New models have been developed for the energy estimation 
of a three rotor wind turbine. Simulation results as presented in the 
paper are helpful to decide the best suitable power curve model for 
single-rotor as well as for multi-rotor wind turbine. Further as 
observed, three-rotor wind turbine yields more energy in contrast to 
single rotor configuration. This increase is 6.34% with mean wind 
speed of 8m/s & 4.76% with mean wind speed of 12m/s. Analysis, as 
reported, shows that an equivalent three rotor configuration results 
into higher annual energy yield with low installation cost. 

 
Keywords— Multi-rotor wind turbine, Performance Coefficient, 

Power curve model, Wind energy.  

I. INTRODUCTION 
ut of all renewable energy resources, wind energy is 
emerging as the fastest growing resource. Today it has 
acquired the substantial share as for as renewable energy 

sector growth is concerned. The horizontal axis wind turbine 
approach currently dominates and acceptable to harness wind 
energy worldwide [1-3]. The power output of wind turbine is 
expressed as: 
 

               3

2
1 AvCP pρ=                     (1)          

 
Where 
 
P  = Power output of wind turbine (watt), 
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 ρ  = Air Density (kg/m3),  
 

pC  = Power Coefficient 
 
A  = Rotor Area (m2),  

 
v  = Wind Speed (m/s) 
 
As evident from equation (1), power developed by wind 
turbine is dependent upon the rotor swept area ( A ), 
coefficient of performance ( pC ) & wind speed ( v ). In order 
to increase the power production, manufacturer developed the 
conventional wind turbine with large rotor size. At present 
wind turbine with very large ratings (>10MW) are under 
development stage. Recent studies [4] have proposed a single 
wind turbine with a rating of 20 MW. However major 
problems associated with large rotor size [5, 6, 7] are:    
  

• Costly due to increased mass. The mass of a set of 
blades for any wind turbine is: 3kpDM =  where 
M  = Mass in kg, D  = Rotor diameter in meter, 
k p = Constant of proportionality. 

• Restriction on rotor size due to tower height & 
proximity to the ground. 

• Complicated design due to bending and tensile stresses 
of longer blades. 

• The weight of gearbox increases with rotor size. 
• Increased blade weight to power output ratio results 

into uneconomical operation with increased noise 
pollution. 

 
    Multirotor configuration is a solution to overcome some of 
the problems. Major advantages of multirotor wind turbines 
are [8]: 
 

• The structure becomes economical with large 
capability than a single rotor wind turbine. The cost 

of the multi-rotor system is quantified as 
N
1

 

times the single rotor structure. ‘ N ’describe the 
number of rotors for a multirotor wind turbine. It is 
due to the reduction in mass. 
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• The presence of a number of small rotors in space on 
one tower gives the possibility of better utilization 
of a wind site. 

 
On other hand, major problems associated with multirotor 

structure are mutual interaction between rotors, special tower, 
and gear arrangements. Multirotor wind turbines (i.e. two or 
more rotor on a single support) are an old concept [9] and in 
1978 dick [10] observed the performance of a downstream 
turbine rotor just behind the upstream turbine rotor. Later on 
Kotb et al. [11] investigated the performance of staggered 
horizontal axis rotors and predicted the power loss due to the 
upstream rotor. 15% power loss was predicted for a 0.26 
overlap area ratio. No et al. [12] developed a FORTRAN and 
Matlab/Simulink software to predict the performance of a dual 
rotor wind turbine generating system. In order to reduce power 
block, the size of the upstream rotor was considered small as 
compared to the downstream rotor. Yap et al. [13] discussed 
the electricity generation due to dual rotor wind turbine 
located near the exhausting gasses in a plant and its effects on 
the performance of cooling tower. Riadh et al. [14] 
investigated a dual rotor scaled down turbine structure and 
conclude that a dual-rotor turbine may produce up to 60% 
more power than a single rotor turbine. Some of the 
researchers [15-16] made a comparison of single rotor & dual 
rotor turbines under transient disturbances. It was observed 
that dynamic response of a dual rotor system is more stable. 
Jamieson et al. [8] made a detailed comparison of 20 MW 
conventional wind turbine with a 20 MW multirotor turbine 
comprising of four rotors with each one of 5 MW. It was 
observed that four 5 MW rotors will cost ≈ 80% of a 20 MW 
single rotor structure and there is a further scope to reduce its 
cost. It was suggested that there is a need to focus more 
attention on the research related to multi-rotor turbines. Hunag 
et al. [17] also made a comparison of a single rotor and 
multirotor wind turbines when used in a wind solar hybrid 
generation. It was found that at low wind speeds, the 
multirotor wind turbine-solar hybrid generation performs 
better in contrast to single rotor wind turbine-solar hybrid 
generation. Jamieson et al. [18] also investigated the support 
structure consideration and presented one potential structure 
layout for a 20 MW multirotor turbine. 

Keeping in view the advantages of a multi-rotor wind 
turbine, in this paper a modified power curve model is 
employed to find out the power and energy output of a multi 
rotor wind turbine. Comparative analysis as presented using 
simulation results proves the following. 

 
1) Superiority of linear power curve model. 
2) Economics operation of equivalent multi rotor wind 

turbine. 

II. POWER CURVE MODEL 
Power curve which is one of the major characteristics of a 

wind turbine may be used to compute its output even during 
wind variations. Figure 1 shows the representation of a power 
curve for a wind turbine. Power output curve appears to be 
nonlinear between cut-in and rated wind speeds. 

 
Fig. 1 Power output curve of wind turbine 

Zone-ii, nonlinear part of wind turbine curve requires power 
curve modelling to estimate power output in case wind speed 
lies in this zone. Power output forecasting for a given wind 
spectrum using power output curve from cut-in to cut-out wind 
speeds may be useful for the following research areas. 

Performance Analysis, Reliability Assessment and Loss of 
Power Supply [19-25]: Power output of a wind turbine being 
one of the major performance depicting parameters requires 
maximum attention. Its estimation [20-21] under varying wind 
conditions gives wind energy prediction during a specified 
interval (month/year). ‘Reliability assessment’ and ‘loss of 
power supply’ as discussed [22-25] need proper focus due to 
intermittent and uncertain mature of wind. The standard 
method to evaluate such factors requires the difference 
between ‘load duration curve’ and ‘generated power curve’. 
Researchers employed either linear power curve model or 
polynomial power curve model for developing the generated 
power curve of the wind turbine. 

Optimal Site Matching, Planned Operation, Power Output 
Fluctuations & Economic Analysis [26-31]:  Pairing between 
the wind turbine and installation sites is also very important for 
utilizing best possible wind energy. Jangamshetti et.al [26] 
addressed the problem of site matching and recommended the 
use of normalized power curve of wind turbines. For a given 
wind regime, a wind turbine with specified values of v ci(cut-in 
wind speed), v r(rated wind speed) & v co(cut-out wind speed) 
is to be selected as to maximize the power output [27]. Shimy 
[28] investigated the site matching with the help of a case 
study of the Gulf of Suez region in Egypt and recommended 
the accurate modelling of wind turbine output-power-curve. 
Second order power curve model has been employed for the 
site matching. 

Ray [29] used the linear model to compute the power output 
of wind turbines, required for planned operation. As observed, 
the desirable plan would be one that results in higher peak load 
generation in comparison off-peak generations.  
Reduction of power output fluctuations [30] due to 
unpredictable nature of wind is one of the current research 
areas. Sudden wind power fluctuations of a wind turbine 
feeding power network may affect the grid frequency. Properly 
designed filters may be incorporated to avoid such occurrence. 
All these necessities accurate power output estimation of wind 
turbines which in turn depends upon power curve model of the 
turbine.  

Economic dispatch model [31] includes two wind power 
generators along with two conventional generators feeding a 
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load. Because of the uncertainty of the wind, factors for 
overestimation and underestimation are to be included. Hence 
accuracy of a power-output-curve model of the wind turbine 
may affect the values. As observed, linear power curve model 
is used to estimate the wind power output.    

Sizing, Performance Analysis & Power Management of 
Hybrid Generating System with Wind Power as a Generating 
Resource [32-39]: Major drawback associated with the wind 
and solar power is their unpredictable nature. Moreover, such 
resources also depend upon weather and climate changes. 
However, due to a high degree of complementarity between 
these resources, both can be operated in parallel to feed the 
load in isolation or to the power network. Such operation of 
generating units is called Hybrid generating system [32-39]. 
Wind power being one part of the system, it requires wind 
turbine modelling for computation of its size, performance and 
power management for achieving economic & reliable 
operation. Researcher adopted either linear or polynomial 
power curve model for the computation of power output of 
wind generating unit. 

Thapar et al. [40] tried to give a comparative analysis of 
various methods for the modelling of power output curve for 
its nonlinear region between cut-in to rated wind speeds. 
Analysis, as presented, is based upon the two categories as: 

 
 Models based on the shape of the power curve. Such 

models need a few information related to wind 
turbine such as cut-in speed, rated speed and rated 
power etc. 

 Models based on the actual power curve supplied by 
the manufacture. Such models [41-43] require 
complete power output data points corresponding to 
wind velocities in between cut-in and rated speed. 
Nacelle Power Curve as recommended by Paiva et al. 
[44] is one of them.  

 
As per literature review, most of the researchers employed 

the models based upon the shape of the power curve. It is due 
to the advantage that such models require a little bit of 
information contrary to a model based upon actual power data 
supplied by the manufacturers. Power curve models generally 
employed by the researchers are as discussed below. 

 

A. Linear Power Curve Model, LPCM [40] 
 

       r
cir

ci P
vv
vvvP

−
−

=)(                   (2) 

Where 

 = Power output of wind turbine corresponding to any 
wind speed between cut-in to rated values 
 

 
 

B. Cubic Law Power Curve Model, CLPCM [35] 

          rbPavvP −= 3)(                     (3)                                                                   

Where,  

33
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r

vv
Pa
−

= ,  
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3
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vv
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−

=  

C. Weibull Power Curve Model, WPCM [33] 
 

kbvavP +=)(                         (4) 
                                                                   
Where, 
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ci

k
r

r

vv
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−
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k = Shape factor (corresponding to Weibull distribution with 
mean wind speed as rated wind speed)  
 

D.  Polynomial Power Curve Model, PPCM [45] 
 

rPvkvkkvP )()( 2
321 ++=          (5) 

Where 1k , 2k  and 3k  are:  
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E.  Quadratic Power Curve Model, QPCM [46] 
 

             r
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ci P
vv
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= 22
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)(             (6)                                                      

F. Speed Cube Power Curve Model, SCPCM [47] 
 

3

2
1)( AvCvP pρ=  
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In the present paper power curve models as discussed above 
have been adopted to analyze the output of NORDEX- N117-
3000 kW wind turbine and a multi-rotor turbine comprising of 
three LEITWIND- LTW77-1000 kW identical wind turbines 
[Appendix A]. 

III. POWER AND ENERGY OUTPUT OF SINGLE ROTOR WIND 
TURBINE  

The power output of a wind turbine as shown in figure 2 
may be obtained using equation (8). Wind speed is considered 
at the hub height of wind turbine. 

 
Fig. 2 Single-rotor wind turbine representation 
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Where  
v ci = Cut-in wind speed,  v co = Cut-out wind speed, v r = 
Rated wind speed 

Two parameters Weibull Function [48] is found to be best 
to fit the wind speed distribution over a period of time. 
However selection of shape parameter (k) and scale parameter 
(c) as used are significant to define the mean speed of the wind 
at a specific site.  The scale factor is usually taken 1.1 times 
the average or mean wind speed.  k > 3 is an indication of 
regular and steady wind. For the value of k=1, the relative 
frequency distribution appears to be flat i.e. highly variable 
wind regime. For k=2, distribution is called Rayleigh 
distribution. Weibull distribution is given as: 
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Weibull distribution function as obtained using above 

equation and power curve model as defined may be used to 
estimate the annual energy yield (E) of the wind turbine as: 

 

∑ ∑ ∗∗+∗∗=
r

ci

co

r

v

v

v

v
IIIrII vfPvfvPE )10(8760)(8760)()(

 
 
‘ )(&)( vfvf IIIII ’are speed frequencies of zone-ii & 
zone-iii respectively. 

IV. POWER AND ENERGY OUTPUT OF MULTI-ROTOR WIND 
TURBINE 

Multirotor wind turbine has two or more rotors and these 
may be arranged either in a plane or along the same axis. Such 
turbines are named as coplanar or coaxial multi-rotor wind 
turbines respectively. Figure 3 shows an equivalent three rotor 
wind turbine. Three hubs in case of the multirotor turbine are 
at different heights in comparison to the hub height of single 
rotor turbine. 

 
Fig. 3 Multi-rotor equivalent representation of wind turbine 
 

Figure 4 shows the power output curve for the three 
identical rotors R1 (Rotor-1), R2 (Rotor-2) and R3 (Rotor-3) of 
a multirotor turbine. For the purpose of the equivalence 
between the single rotor and multirotor structure, variation of 
wind speed is considered at a height ‘h’ as in the case of single 
rotor turbine. Due to the displacements of hub heights of 
multi-rotor configuration, wind speeds appearing at the 
respective hub heights of rotors are totally different as 
compared their values at the hub height of single rotor 
configuration. 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 12, 2018

ISSN: 1998-4464 249



 
 

 

 
Fig. 4 Power output curves of multi-rotor wind turbine 

As shown in figure 4, It results in to the followings: 
• '

civ )( 1R , '
civ )( 2R  & '

civ )( 3R  are the effective values of 

cut-in speeds of rotor R1, R2 & R3. 

• '
rv )( 1R , '

rv )( 2R  & '
rv )( 3R  are the effective values of 

rated speeds of rotor R1, R2 & R3. 

• '
cov )( 1R , '

cov )( 2R  & '
cov )( 3R  are the effective values of 

cut-out speeds of rotor R1, R2 & R3. 

Where;     
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rotors. 
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 are respective cut-out wind speeds of three 

rotors.  
 
Effective cut in, rated and cut-out wind speed for the three 
rotors can be obtained using the power rule [49] and 
power output of three-rotor turbine can be defined as:  
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……. (11) 
 
Where; 

 
)(1 vPm = “As per power curve model of rotor-1”; when v  

varies from )()()( 2
'

1
'

3
' RvRvtoRv cicici =  

 
)(2 vPm = “As per power curve model of all rotors”; when v  

varies from )()()( 3
'

2
'

1
' RvtoRvRv rcici =  

 
)(3 vPm = Rated power of rotor-3 + “As per power curve 

model of rotor-1&2”; when v  varies from   

)()()( 2
'

1
'

3
' RvRvtoRv rrr =  

 
)(4 vPm = “Sum of rated power of all rotors”; when v  varies 

from )()()( 3
'

2
'

1
' RvtoRvRv corr =  

 
)(5 vPm = “Sum of rated power of rotors-1 &2”; when v  

varies from )()()( 2
'

1
'

3
' RvRvtoRv cococo =  
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Weibull distribution function as obtained using equation (9) 
and power curve model as defined above may be used to 
estimate the annual energy yield  
 
( MRE ) of the multirotor wind turbine as: 
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)(vfmI , )(vfmII , )(vfmIII , )(vfmIV  and )(vfmV are the 
respective speed frequencies as per Weibull distribution. 
 

V. SIMULATION RESULTS 
Wind turbine NORDEX- N117-3000 kW and LEITWIND- 

LTW77-1000 kW [Appendix A] are selected to compare the 
simulated results in case of single-rotor and multi-rotor wind 
turbines respectively.   Manufacturer power curve data as 
shown in appendix-A is used as reference data for comparative 
analysis. 

A. Single-Rotor Wind Turbine Simulations 
Figure 5 shows the comparison of power output of single- 

rotor wind turbine when wind speed varies from v ci to v r and 
air density as 1.225 kg/m3. Correlation factor between 
simulation and manufacturer data is shown in Figure 6.  The 
correlation coefficient (R), measures the strength and a 
correlation greater than 0.98 is generally described as very 
strong. 
 

 
Fig. 5  Power output comparison of single-rotor wind turbine 

 

 
Fig. 6 Correlation coefficient of different power curves used for 

single-rotor wind turbine 
 

In order to compute the energy yield of NORDEX- 
N117turbine, Weibull distributions of the wind as shown in 
Figure 7 are taken corresponding to mean wind speed of 
8m/sec and 12 m/sec.  One of the mean speeds is selected near 
to the rated wind speed of the turbine. Such wind speeds can 
be experienced at many places such as Randolph New 
Hampshire [51] & Duolun Xillingol Inner Mangolia [52]. 
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Fig. 7 Weibull distribution with mean wind speed of 8m/sec &12 

m/sec 
 

Annual energy errors as obtained are shown in Figure 8.  As 
observed performance of linear power curve model is found to 
be excellent with minimum errors (1.3 % & 5.1 % for mean 
wind speeds of 12m/sec and 8m/sec respectively) and hence 
may be adopted without any hesitation for energy forecast of 
the single rotor wind turbine. WPCM & QPCM follows it with 
respective annual energy errors as 6.1% & 10.4%.  

 
Per unit energy error for annual energy, prediction is defined 
as: 

m

m

E
EE

erre
−

=)(
                    ---- (13) 
 

mE = Annual energy production using manufacturer data 
 

 
Fig. 8 Annual energy error of different power curve models when 

used for single-rotor wind turbine 

B. Multi-Rotor Wind Turbine Simulations 
Figure 9 shows the comparison of power output of multi- rotor 
wind turbine when wind speed varies from )( 3

' Rvci to 

)()( 2
'

1
' RvRv rr = and air density as 1.225 kg/m3.  

Correlation factor(R) as obtained are shown in figure 10.  
Better correlation factor for LPCM, WPCM and QPCM makes 
them better models in comparison to others. Annual energy 
errors as obtained in the case of equivalent multi-rotor wind 
structure are shown in figure 11. LPCM results into minimum 
annual energy errors (1.2 % & 3.8 % for mean wind speeds of 
12m/sec and 8m/sec respectively) as compared to other power 
curve models. WPCM & QPCM follows it with respective 
annual energy errors as 4.3% & 8.3%. Once again LPCM 
performs best. 
 

 
Fig. 9 Power output comparison of multi-rotor wind turbine 

 

 
Fig. 10 Correlation coefficient of different power curves used for 

multi-rotor wind turbine 
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Fig. 11 Annual energy error of different power curve models when 

used for multi-rotor wind turbine 
 

VI. DISCUSSION ON RESULTS 

Critical analysis of simulation results as obtained may be 
summarized as: 

 
• The correlation coefficient (R), measures the strength 

of a linear relationship between two variables. A 
correlation greater than 0.8 is generally described as 
marginally strong and a correlation less than ‘0.5’ 
may be described as weak. Therefore, models with 
highest values of correlation coefficient may be 
screened as better models. On this basis LPCM, 
WPCM and QPCM appear to be better as compared 
to others in both types of turbines i.e. single-rotor and 
multi-rotor configuration.  

 
• Linear power curve model (LPCM) gives excellent 

energy prediction with minimum annual energy errors 
for both types of wind turbines i.e. single-rotor as 
well as for multi-rotor wind turbines. Hence it can be 
selected as the best fit model for the performance 
analysis of any wind turbine. 

 
Cost Analysis: Many researchers [53-59] tried to analyze 

the cost of conventional wind turbine. Keeping in view the 
formulation developed, Table 1 shows the cost comparison of 
two types of wind turbines. 
 
 
 
 
 
 
 
 
 

Table. 1 Cost analysis if multi-rotor wind turbine 

VII. CONCLUSION 

Large rotor size and turbine cost have diverted the attention 
of scientists from single-rotor to multi-rotor wind turbines. 
Power and energy output estimation of such turbines using 
conventional power curves with some modifications, will be 
helpful to performance of such turbines.  

As per discussions in section 5 and 6, Linear Power Curve 
Model [LPCM] appears to be excellent among all models and 
hence may be adopted for power and energy forecast for any 
wind turbine. Annual energy yield as obtained is shown in 
table 2. 
Multirotor wind turbine yields more energy in contrast to 
single rotor construction. This increase is 6.34% with mean 
wind speed of 8m/s & 4.76% with mean wind speed of 12m/s. 
Table 1 shows the cost comparison of multi rotor wind turbine 
with that of single rotor configuration. Cost of a multirotor 
wind turbine (3*1000 kW) appears to be 83.47% of single 
rotor wind turbine (3000 kW). Analysis, as reported, shows 
that an equivalent three rotor configuration results into higher 
annual energy yield with low installation cost. 
 
 

Project cost of 3000kW wind turbine = 3417843£  
Cost of wind turbine = 69% of wind project cost 
 = 2358311 £ 
Foundation cost =16% of total Project Cost 
Tower cost =    16.38 % of total Project Cost 
Gear box cost = 8.2624 % of total Project Cost 

Sr 

No 

Wind turbine 

component 

Component 

costs (£) of 

Single-rotor 

wind turbine 

Component 

costs (£) of 

Multi-rotors 

wind turbine 

1 Rotor Blades 483882 448521 

2 Rotor Hub 78806 108970 

3 Rotor Bearing 56113 38016 

4 Pitch System 126040 122289 

5 Gearbox 282395 282395 

6 Tower 559842 391889 

7 Foundation 546854 315726 

8 
Other 

components 
224374 224374 

9 

Support 

Structure 

(Spars + 

Cables) 

--------- 36138 

Total Cost 2358306 1968318 
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Table. 2 Annual energy yield of wind turbine 

Mean Wind Speed 
(m/s) 

Annual Energy Yield (kWh) 

Single Rotor Multi Rotor 

8 13516967 14374110 

12 18284456 19155680 

 

APPENDIX-A 
Specifications & power output data of single-rotor 

turbine:  

NORDEX- N117-3000 kW, Cut in speed = 3 m/s, Rated speed 
= 12 m/s, Cut-out speed = 25 m/s 

Wind 
speed 

(m/sec) 

Power Output 
(kW) 

 

Wind 
speed 

(m/sec) 

Power Output 
(kW) 

 

3 16 8 1534 
4 129 9 2131 
5 333 10 2643 
6 624 11 2916 
7 1020 12-25 3000 

 
Specifications & power output data of multi-rotor turbine:  
LEITWIND- LTW77-1000 kW, Cut in speed = 3 m/s, Rated 
speed = 11 m/s, Cut-out speed = 25 m/s 

Wind 
speed 

(m/sec) 

Power Output 
(kW) 

 

Wind 
speed 

(m/sec) 

Power Output 
(kW) 

 
3 24 8 617 
4 69 9 839 
5 150 10 952 
6 269 11 1000 
7 433 12-25 1000 
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